Перейти к контенту

den_vish

Пользователи
  • Число публикаций

    15
  • Регистрация

  • Последнее посещение

Сообщения опубликованы den_vish

  1. https://geektimes.ru/post/282436/

    Учёные готовят фундаментальное обновление единиц измерения

    сли и есть у учёных священные объекты, то это один из них: единственный, тщательно охраняемый 137-летний металлический цилиндр, расположенный в подвале близ Парижа. Этот прототип точно определяет значение килограмма массы во всём мире.

    У килограмма говядины в продуктовом магазине та же масса, что и у этого особого куска металла, сплава платины и иридия. У 60-килограммовой женщины масса в 60 раз больше, чем у него. Даже далёкие астрономические объекты, например кометы, измеряются относительно этого цилиндра. У кометы Чурюмова-Герасименко, которую недавно посещал европейский космический аппарат Розетта, масса составляет 10 триллионов таких цилиндров.

    Но в этом куске металла нет ничего особенного, и его масса даже не является идеальной константой. Царапины, накапливающаяся грязь, могут незначительно менять его массу. После чего килограмм мяса будет весить чуть больше или меньше, чем раньше. Для гамбургеров эта разница будет несущественной, но для научных измерений небольшой сдвиг в определении килограмма может привести к большим проблемам.

    Эта тема волнует некоторых исследователей. Они предпочли бы определить важные единицы измерения – килограммы, метры, секунды – через неизменяемые свойства реальности, а не через наобум взятые длины, массы и другие количества, придуманные учёными. Если бы люди встретились с инопланетянами и сравнили бы системы измерения друг у друга, как говорит физик Стефан Шламмингер [stephan Schlamminger], «над нами смеялась бы вся Галактика».

    Чтобы исправить ситуацию, метрологи – редкий вид учёных, занимающийся точными измерениями – исправляют систему. Вскоре они начнут использовать фундаментальные константы природы – не изменяющиеся числа вроде скорости света, заряда электрона и постоянную Планка – для калибровки своих линеек, весов и термометров. Они уже избавились от искусственного определения метра – бруска из платины и иридия с гравировкой. В 2018 году они выбросят и парижский килограммовый цилиндр.

    В 2018 семь единиц международной системы единиц (внутренний круг) будут переопределены через семь констант (внешний круг).

    Фундаментальные константы числятся среди наиболее точно измеряемых параметров, поэтому они и кажутся идеальными для определения единиц измерения. Но они сами по себе – загадки. Постоянная тонкой структуры служит загадкой для физиков с момента её появления в уравнениях 100 лет назад. Каждый раз, когда электрически заряженные частицы притягиваются или отталкиваются – где бы то ни было во Вселенной – эта постоянная играет свою роль. Её значение определяет силу отталкивания и притягивания. Измените её на несколько процентов – и звёзды начнут создавать меньше углерода, основы всей жизни. Ещё чуть-чуть – и звёзды, молекулы и атомы вообще не возникнут. Складывается впечатление, что её значение было подобрано специально для того, чтобы во Вселенной возникла жизнь.

    Значения других фундаментальных констант тоже нельзя объяснить – можно только измерить. «Никто не знает, почему у этих констант именно такие значения»,- говорит физик-теоретик Джон Барроу [John Barrow] из Кембриджского университета.

    Эта неопределённость, окружающая константы, может причинить неудобства метрологам. Законы физики не запрещают константам меняться во времени или пространства – хотя доказательств наличия таких изменений найдено не было. Некоторые спорные измерения намекают на то, что постоянная тонкой структуры может быть разной в разных частях Вселенной. Это может означать, что и другие константы меняются, а это разрушит всю опрятную систему, к принятию которой готовятся метрологи.

    Плохое самочувствие учёным причиняет не только килограмм. Следующий обвиняемый – кельвин, единица измерения температуры.

    «Она сумасшедшая»,- говорит физик Майкл де Подеста [Michael de Podesta] из Государственной физической лаборатории в Теддингтоне, Англия. «Человеческие стандарты температуры – это уровень дрожания молекул в странной точке». Эта точка – схожим со священным килограммом образом выбранная наугад – тройная точка воды, определённая температура и давление, при которой сосуществуют жидкая, газообразная и твёрдая фазы воды. Этой температуре назначено значение в 273,16 Кельвинов (0.01° Цельсия).

    А ещё есть ампер, обозначающий поток электричества, питающего ноутбуки и лампочки. «Мы годами мучились с определением ампера», — говорит Барри Инглис [barry Inglis], президент Международного комитета мер и весов. Сегодняшнее слабое определение следующее: это поток, который при протекании по двум бесконечно длинным и бесконечно тонким проводам, расположенным на расстоянии метра друг от друга, приведёт к появлению взаимодействия между ними определённой силы. Но поскольку такие провода сделать невозможно, на практике определять ампер таким образом не очень удобно. В результате измерительное оборудование сложно откалибровать. Это не проблема для электриков, тянущих проводку в вашем доме, но с точки зрения измерений высокой точности это нехорошо.

    Эти примеры показывают уровень дискомфорта, окружающий настолько важные для науки фундаментальные единицы измерения. «В фундаменте наметилась волосяная трещина, и на таком основании здание физики строить нельзя»,- говорит Шламмингер из Национального института стандартов и технологии в Геттисберге.

    Для заделки трещины учёные хотят обновить международную систему единиц измерения, или СИ, в 2018 году. Килограмм, кельвин, ампер и моль (единицы, измеряющие количество вещества) будут переопределены через связанные с ними константы. Сюда войдут постоянная Планка, определяющая масштабы квантового мира; постоянная Больцмана, соотносящая температуру с энергией; постоянная Авогадро, задающая количество атомов или молекул в моле; величина заряда электрона или протона, также известная, как элементарный заряд. Новые единицы будут основаны на современном понимании физики, включая законы квантовой механики и эйнштейновской специальной теории относительности.

    Учёные уже занимались подобными упражнениями, переопределяя метр через фундаментальную константу – скорость света, которая всегда одна и та же.

    В 1983 году метр превратился в расстояние, которое свет проходит в вакууме за 1/299 792 458 долю секунды. Эта последовательность цифр взялась из постоянно уточняемой скорости света. Учёные договорились считать её равной ровно 299 792 458 метрам в секунду, что и определяет метр. Другие единицы подвергнутся схожим изменениям.

    Перетряска такого количества единиц происходит «раз в жизни», поясняет физик Дэвид Ньюэл из Национальный института стандартов и технологий. Но большинство людей этого не заметят. Определения поменяются, но изменения пройдут так, чтобы размеры килограмма или кельвина не менялись. Вам не придётся переплачивать за салат-бар.

    И хотя изменения по большей части будут скрытыми, их преимущества не только философские. В текущей системе тяжело измерять массы, сильно отличающиеся от килограмма. Фармацевтам приходится мерить малые доли граммов для изготовления лекарств. Они могут составлять одну миллионную долю килограммового цилиндра, что повышает неточность измерений. Новая система привяжет массу к постоянной Планка, что позволит точнее проводить измерения как больших, так и малых масс.

    В 2018 году на Генеральной конференции мер и весов метрологи проголосуют за изменения в СИ и скорее всего, примут их. Ожидаются, что новую систему воспримут с радостью. «Очевидно, что система, в которой можно взять комок металла и заявить „это килограмм“, не очень-то фундаментальная»,- говорит физик Ричард Дэйвис из Международного бюро мер и весов во Франции. «Кто будет тратить свою жизнь, пытаясь таким образом измерить атом?»

    Новый килограмм

    Чтобы отправить на пенсию парижский прототип, учёные должны прийти к согласию по поводу значения постоянной Планка. Она равна примерно 6,62607 x 10−34 кг*м2/с. Но её необходимо измерить с особой точностью – до 2 миллионных долей процента, то есть, до семи знаков после запятой – и различные измерения должны совпасть. После этого значение постоянной будет изменено. Поскольку метр уже определён скоростью света, а секунда – цезиевыми атомными часами, изменение постоянной Планка определит килограмм.

    image

    Учёные используют ватт-весы, устраивая состязание между электромагнетизмом и гравитацией для измерения постоянной Планка. Ватт-весы на фото изготовлены Стефаном Шламмингером.

    Несколько команд используют различные техники измерений. Первая сравнивает электромагнетизм с гравитацией при помощи ватт-весов. Группа Шламмингера находится на последних этапах настройки инструмента. Благодаря точным квантово-механическим методам получения напряжений, масса объекта можно напрямую сопоставить с постоянной Планка.

    Другие измеряют константу через изготовленные с большой точностью чрезвычайно блестящие кремниевые шары. «Принцип прост,- говорит метролог Хорст Беттин из Немецкого национального института метрологии, Physikalisch-Technische Bundesanstalt. – Мы просто подсчитываем количество атомов».

    Атомы в сфере равномерно расположены в идеальной трёхмерной решётке, поэтому их количество можно подсчитать из размеров сферы. Результирующее измерение постоянной Авогадро можно использовать для подсчёта постоянной Планка, при помощи точного измерения других фундаментальных констант – включая постоянную Ридберга, связанную с энергией ионизации атома водорода. Для таких измерений сферам нужно быть идеально круглыми, чтобы количество их атомов можно было подсчитать. «Землю можно было бы сравнить по округлости с нашими сферами, если бы высочайшие из гор не превышали нескольких метров»,- говорит Беттин.

    Подвергая константы сомнению

    Представьте себе вселенную, в которой скорость света сильно меняется день ото дня. Если бы там использовалась современная метрологическая система, то «сегодняшний метр отличался бы от завтрашнего»,- говорит Шламмингер – явно неидеальная ситуация. В нашей Вселенной свидетельств такой изменчивости не найдено, и если она существует в очень малых пределах, то практического влияния на систему измерений не окажет.

    Но если бы константы не были постоянными, физикам пришлось бы нелегко. Вся физика основана на предположении о неизменности законов, говорит физик Пол Дэйвис [Paul Davies] из Государственного Аризонского университета.

    Физики нашли признаки возможной непостоянности в постоянной тонкой структуры. Если это так, получится, что заряженные частицы ведут себя по-разному в разных частях Вселенной.

    Постоянная тонкой структуры – сплав нескольких других констант, включая заряд электрона, скорость света и постоянную Планка, и их смесь приводит к числу, примерно равному 1/137. Это внесистемная единица, поэтому в разных системах измерения её значение не меняется.

    Учёные отслеживают её через квазары – удивительные космические маяки, возникающие благодаря удалённым сверхмассивным чёрным дырам. По пути к земле свет квазара проходит через облака газа, поглощающие свет на определённых частотах, что и приводит к возникновению разрывов в спектре света. Положение разрывов зависит от постоянной тонкой структуры. Изменения в положении разрывов во времени или пространстве могут означать изменения этой константы.

    В 2011 учёные сообщили о провоцирующих намёках на изменения константы. Астрофизик Джон Уэбб из Университета Нового Южного Уэльса с коллегами сообщили, что в одном направлении небесной сферы постоянная тонкой структуры увеличивается, а в другом – уменьшается, будто бы во Вселенной есть особая ось. Утверждение это спорное, и сам Уэбб относит себя к скептикам. «Это, конечно, радикально, и когда вы делаете подобное открытие, вы ему не верите». Но, несмотря на все попытки опровергнуть эти свидетельства, изменчивость остаётся на месте.

    В случае подтверждения наблюдений последствия будут невероятными. «Эффект очень мал,- говорит Дэйвис, — но я думаю, что он окажется шоком, поскольку людям хочется, чтобы законы физики были неизменными. Идея их изменчивости очень беспокоит большую часть физиков».

    Некоторые учёные придумали успокаивающие объяснения изменчивости константы. Майкл Мёрфи [Michael Murphy] из Технологического университета Суинберна в Мельбурне предполагает, что в этом стоит винить проблемы калибровки телескопа. Мёрфи был соавтором работы 2011 года, сообщавшей о вариациях в константе. В сентябре Мёрфи с коллегами сообщили, что при использовании телескопа без проблем с калибровкой подтверждает неизменность постоянной тонкой структуры. Но квазары, описанные в этой работе, не исключают наличие изменений в той части неба, которую изучали для работы от 2011 года.

    К возможности изменения констант можно отнести и другие загадки физики. Учёные считают, что большую часть вещества Вселенной составляет невидимая тёмная материя. В работе от 2015 года физики Виктор Фламбаум и Евгений Стадник из Университета Нового Южного Уэльса показали, что тёмная материя может изменять фундаментальные константы, взаимодействуя с обычной.

    Изменение скорости света может повлиять на современные представления об эволюции Вселенной. Учёные считают, что во время инфляции пространство чрезвычайно быстро расширялось, что привело к возникновению Вселенной, однородной на больших масштабах. Это согласуется с наблюдениями: температура реликтового излучения, или света, возникший через 380 000 лет после Большого взрыва, практически везде одна и та же. Но космолог Жуан Магейжу [João Magueijo] из Лондонского имперского колледжа предлагает альтернативу инфляции: если бы в ранней Вселенной скорость света была выше, это объяснило бы её однородность.

    «Если поднять скорость света в ранней Вселенной,- говорит он,- появляется возможность поработать над объяснениями её сегодняшнего состояния».

    Вселенная с точной подстройкой

    К ужасу многих физиков, чьи уравнения испещрены фундаментальными константами, эти значения нельзя вывести из физических принципов. Учёным неизвестно, почему электроны притягиваются к заряженным частицам именно с такой силой, и могут лишь измерять её значение и помещать его в формулы. Такие чёрные ящики принижают элегантность научных теорий, пытающихся объяснить Вселенную от начала до конца.

    Особенно волнителен тот факт, что точные значения этих констант крайне важны для появления звёзд и галактик. Если бы во время рождения Вселенной определённые константы – в частности, постоянная тонкой структуры – немного отличались бы, то космос был бы пуст и бесплоден.

    В результате многие считают, что должна существовать некая теория, ограничивающая эти величины. Но недавние попытки разработки этой теории зашли в тупик, говорит физик-теоретик Фрэнк Уилчек [Frank Wilczek] из MIT. «За последние десятилетия прогресс был невелик».

    Некоторые учёные обратились к альтернативному объяснению: константы могут быть не специально подобраны, но выбраны случайно, и эти броски кубиков происходили много раз во многих вселенных, или в разных частях Вселенной. «Мы поменяли представление о фундаментальных константах. Они уже не так жёстко определены и окончательны»,- говорит Бэрроу.

    Могут быть и другие вселенные, или же удалённые части нашей Вселенной, где работают другие константы. В тех местах жизнь может и не выжить. Так же, как разнообразная жизнь развилась на Земле, в подходящем климате, а не на Марсе, так и наша Вселенная может обладать константами, склонными к появлению жизни, поскольку только здесь она могла зародиться.

    Также увеличивается несоответствие между экспериментальными данными и теоретическими выкладками по поводу констант. Хотя учёные меряют их с потрясающей точностью, и погрешности измерений составляют лишь миллиардные доли, происхождение констант остаётся необъяснимым.

    И хотя метрологи пытаются построить их систему на более надёжном фундаменте, привязывая единицы измерения к константам, этот фундамент ещё может покачнуться. Изменяющиеся константы сделают систему менее красивой и аккуратной. Ньюэл говорит, что системе единиц придётся эволюционировать вместе со знаниями и наукой. «А затем можно будет оглядеться и использовать эту систему измерений для дальнейшего изучения окружающего нас мира».

  2. так, в общем восстанавливаю калибровку с заданной точностью, понимаю что есть вероятность

    упереться в края погрешностей, считаю арифметическим способом,

    периодически провожу проверку контрольным способом по ГОСТ 22760-77.

    Ирина-Ираида, теперь по поводу того, что может якобы так случится что метод гербера не применим на моем предприятии

    в силу ряда абстрактных причин - это практически не возможно, потому что:

    - инструментарий идет поверенный;

    - лаборанты с прямыми рукам;

    - гост описывает порядок проверки полученных значений, и он соблюдается,

    а так же указывает что необходима перекрестная проверка другим методом (ГОСТ 22760-77) и она делается,

    потому что есть такой зверь как роспотребнадзор и россельхознадзор, а они проверяют в том числе и результаты анализов в лабораториях

    и проверяют они не в одной лаборатории, а в трех-четырех;

    и я убей не пойму каким макаром MSA мне поможет при проведении анализов в лабораторных условиях, и уж тем более при

    контроле работы инфракрасного прибора, и вы не вникаете и отказываетесь отвечать на все мои вопросы,

    повторяя что то из области - "больше измерений богу измерений, статистики богу статистики".

    равильно: "что бы пресечь прения! :

    Надо провести измерения 10-и разных партий молока тремя лаборантами

    а вы мне сейчас анекдот напомнили:

    "Взяли на работу нового бухгалтера, озадачили сделать отчет,

    бухгалтер приходит вечером к руководителю и говорит:

    - Я проверил результаты 10 раз...

    - О, да вы большой молодец! Давайте!

    - Вот вам 10 разных отчетов"

    всем, кто дал толковые советы и выразил свое мнение - огромное спасибо, в целом вектор понятен.

  3. Мы верим тому, что написано в паспорте!

    А включить мозг и вспомнить арифметику слабо? Расчеты ведь примитивные (денег на ПО вам не дадут никогда).

    будьте сдержаннее, поверьте - это не сложно,

    (улыбка вкл)

    исходя из ваших утверждений получается что все методы используемые на предприятиях полное г., пока

    не проведен анализ измерительных систем, не знаю как там в автопроме,

    но молоко идет со стабильным перекрестным анализом в двух лабораториях, а то и больше (от поставщика зависит), отклонения конечно бывают, никто без ошибок не работает, даже аналитики процессов,

    блин, но там же не проведен анализ MSA, правда перекрестный анализ и со сторонним лабораториями

    тоже в целом нормально идет... но терзают меня смутные сомнения что там тоже надо провести анализ средств измерения

    причем даже если проведу анализ средств измерения, а что он даст то?

    понимание что я могу что то использовать с такой то погрешностью, окей, но вы так и не

    ответили как мне её считать между двумя методами, и, не в обиду будет вам сказано, чем то напоминаете мне апологетов кирби,

    (улыбка выкл)

    я задаю конкретные вопросы,

    на которые хотелось бы получить конкретные ответы - 1+1 = 2, или "нельзя сложить 1+слово и получить 2"

    а не "а давай проверим вашу систему исчисления, может она не применима к данной реалии",

    неужели так сложно, просто и не навязчиво ответить:

    "чувак, считается вот "так", но разумнее поступить "так", потому что "ряд причин", и в принципе, если вашу организацию интересует,

    я готова организовать вам "то-то и то-то, мат вопросы в личку" - и все сразу оценят, да, вы в теме, методами владеете, аргументируете грамотно, хватка есть.

    извиняюсь что был несколько не сдержан, но агрессивный маркетинг вызывает отторжение.

  4. Прибор и анализы - все делается и находится в лабораториях, как в госте написано.

    И проверять применимость метода к предприятию - не логично, не может так получится что метод в гост разработанный для

    молока и молочных продуктов, не применим к молоко заводу, это означает что с заводом что-то не так, в частности с лабораторией завода,

    относительно полевых приборов - то да, может и имеет смысл провести данную проверку, хотя по поводу упомянутого вами лазера, не удивлюсь что инструкции

    было написано что он должен быть надежно закреплен и исключены вибрации.

    Теперь, что бы пресечь прения, может вернемся к изначальной теме топика:

    "Имеется инфракрасный анализатор молока Милкоскан Минор 6, который определяет жир с погрешностью +/-0,06%,

    имеется кислотный метод определения жира (метод Гербера с жиромерами), который по госту определяет жир с погрешностью +/-0,08%,

    так как аппарат проверяется на основании показаний метода Гербера, какова в итоге погрешность измерения? +/-0,14%?

    то есть, если я отстрою аппарат по методу гербера,

    а потом сделаю анализ на данном аппарате и сравню с показаниями жиромера,

    то должен получить расхождение в результатах не более 0,14% или все таки не более 0,06% (заявленных в паспорте)?"

    товарищ Т34 настаивает на арифметическом сложении, мотивируя это неверным эталоном,

    товарищи Света и Виктор - на геометрическом, что является общепринятой практикой,

    так как арифметическое сложение, с учетом распределений и прочих особенностей математики дает

    завышенный результат погрешности.

    я ничего не забыл?)

  5. Это не имеет значение к какой отрасли промышленности относится. Фармацевтическая например! Очень важно оценить возможность системы:

    Прежде, чем принять решение о внедрении прибора, методики или средства измерения (СИ) на производстве, вы должны быть уверены в том, что ваша измерительная система пригодна!

    Управлять можно только тем, что можно измерить. © Уолтер Шухарт

    Ваши измерения адекватны? Надо проверить! Только MSA способна оценить: правильно ли выбран тип инструмента (СИ), обучены контролёры и среда в которой проводятся измерения подходит для измерения? Для оценки (измерения) характеристик продукции и процессов необходимо минимизировать риск того, что несоответствие измерительной системы может привести к ложным решениям при контроле продукции и к излишнему регулированию процесса.

    Все СИ должны быть поверены! А насколько СИ подходят в вашей ситуации можно решить только экспериментальным способом. Оценив систему с СИ-1 и СИ-2, а затем сопоставить уровень пригодности! Количество различимых категорий – ndc >5!

    http://it-analiz.ru/files/1/0/4/1048/AnalizMSA.pdf

    Если измерительная система не пригодна – вы не способны контролировать процесс!

    :sos:Прибор может быть выше по классу точности, но не пригоден в конкретном случае по месту процесса

    извините, но вы мало что прояснили по моим вопросам, а судя по протоколу, приложенному к вашему сообщению,

    то по сути вы предлагаете провести повторный статистический анализ метода, который, с вероятностью 1.0, был уже проведен,

    перед внедрением его в ГОСТ, так же не очень понятно по каким критериям можно определить уровень пригодности аппарата, изначально

    созданного для применения в пищевой промышленности, про пригодность метода - он по госту для молочной промышленности.

  6. Возможности двух измерительных систем необходимо проверить. Нужно провести MSA двух систем, с участием двух приборов! И по ndc определите уровень пригодности двух систем. Заявленная погрешность не говорит ни о чём.

    так, какой интересный детектив, прям сюжет не предсказуем)) извините за оффтоп.

    Ирина Юрьевна, ваш пост вызвал у меня кучу дополнительных вопросов:

    как и кто может проводить анализ измерительных систем?

    применимо ли это к пищевой промышленности, потому как судя по краткому описанию - основное распространение автопром?

    что такое NDC?

    имеет ли смысл применять MSA к анализу выполняемому по ГОСТу, с поверенными средствами измерения?

  7. итак, я правильно понимаю, что конечная погрешность измерения складывается из инструментальной погрешности и погрешности метода измерения? тогда принимая во внимание что погрешность метода +/-0,08, а погрешность инструмента +/-0,06 итоговая погрешность измерения будет 0,14

    Не обращайте внимания на эти расчёты, они не для этого случая, вы настраиваете СИ по прибору с погрешностью 0.08, значит и у вашего анализатора погрешность будет 0.08.

    это в случаях когда погрешность СИ меньше метода, так? если я правильно понимаю логику:

    то погрешность измерительного инструмента не может быть меньше погрешности эталона

    (в моем случае эталоном у меня будут выступать результаты измерений методом гербера), таким образом,

    если у меня будет эталон с погрешностью меньшей погрешности прибора, тогда я буду упираться в погрешность прибора и ориентироваться на нее,

    и вся эта занимательная арифметика

    которую я разыскиваю - бессмысленна, и запутываю сам себя?

    и документальный вопрос, при рассмотрении погрешностей прибора я опираюсь в первую очередь на данные из госреестра средств измерений,

    причем на более актуальные? а то по данному прибору есть свидетельство как от 2003г., так и от 2008г. (25334-03 и 25334-08)

  8. милкоскан определяет погрешность с точностью до 0,06% массового содержания жира.

    При всяком определении жирности можно говорить, что результат измерений, например (0,50 ±0,06)% или (4,25 ±0,06)%.

    При работе аппарата в соответствии с инструкцией по эксплуатации.

    Вы, видимо, эту инструкцию хотите нарушить, проведя отстройку (калибровку) по образцу жирности по методу Гербера, имеющему погрешность ±0,08 %.

    Уж если Вы решили внести коррективы в работу анализатора, путем его калибровки, то используйте образцы жирности, как минимум, такие как применяют для его поверки, т.е. по ГОСТ 22760, погрешность приготовленной пробы - 0,03%.

    Если Вы уже откалибровали прибор своим способом, скорее всего погрешность будет в пределах ±0,16%.

    почему именно +/-0,16%? замечание резонное, согласен, относительно метода, но почему именно 0,16 ?

  9. Не совсем так. Принимая гипотезу о нормальном распределении составляющих погрешности и их независимость, можем записать (для P=0,95) d=±1,1*sqrt(0,06^2+0,08^2+dдоп^2)

    все таки геометрически, а не арифметически, спасибо, а коэффициент 1,1 и dдоп - это какой то абстрактный коэф. запаса и погрешность обусловленная чем?

  10. Не путайте погрешность прибора, погрешность метода и погрешность (неопределенность) результата измерений.

    воистину метрология наука темная)

    итак, я правильно понимаю, что конечная погрешность измерения складывается из инструментальной погрешности

    и погрешности метода измерения? тогда принимая во внимание что погрешность метода +/-0,08, а погрешность инструмента +/-0,06

    итоговая погрешность измерения будет 0,14?

  11. Господа знатоки метрологического искусства,

    окажите помощь вот в каком вопросе:

    Имеется инфракрасный анализатор молока Милкоскан Минор 6, который определяет жир с погрешностью +/-0,06%,

    имеется кислотный метод определения жира (метод Гербера с жиромерами), который по госту определяет жир с погрешностью +/-0,08%,

    так как аппарат проверяется на основании показаний метода Гербера, какова в итоге погрешность измерения? +/-0,14%?

    то есть, если я отстрою аппарат по методу гербера,

    а потом сделаю анализ на данном аппарате и сравню с показаниями жиромера,

    то должен получить расхождение в результатах не более 0,14% или все таки не более 0,06% (заявленных в паспорте)?

×
×
  • Создать...