Перейти к контенту

Мирный атом в передвижных устройствах


5 сообщений в этой теме

Рекомендуемые сообщения

АЭС на шасси танка

Атомные танки разных конфигураций тут уже мелькали )

Предлагаю несколько иной взгляд на проблему, надеюсь что не оффтоп:

Встречайте - ТЭС-3, оно же "Объект 27" или модификация на шасси Т-10

tes3-1.jpg

Транспортабельная атомная электростанция. Один из модулей. Всего их четыре, перевозятся они самоходных гусеничных шасси созданных на базе Т-10. На двух транспортерах находилась реакторная установка, на двух других - турбогенератор, пульт управления и разнообразный дополнительный стафф, суммарный вес оборудования составлял 210 тонн.

Оригинальное танковое шасси было удлиннено до 10 опорных катков, увеличина ширина гусениц, разработкой шасси занимались в ОКБ Кировского завода.

Атомный модуль создавали в лаборатории "В", ныне ГНЦ РФ Физико-энергетический институт в Обнинске, бывший некогда центром советских исследований в области атомной энергетики.

Предполагалось что ТЭСы будут использоваться для экстренного снабжения электроэнергией в труднодоступных регионах.

ТЭС-3 вступила в опытную эксплуатацию в 1961 году и была предназначена для "отработки" технологий создания ТЭС в дальнейшем.

Характеристики самой АЭС:

tes-3.gif

несколько модулей ТЭС-3

Станция выполнена по двухконтурной схеме с гетерогенным водо-водяным реактором тепловой мощностью 8,8 тыс. кВт, охлаждаемым водой под давлением 130 ат при температурах на входе реактора 275°С и на выходе 300°С. Расход воды в первом контуре установки 320 т/ч.

В активной зоне реактора, имеющей форму цилиндра высотой 600 и диаметром 660 мм, размещены 74 тепловыделяющие сборки с высокообогащенным ураном. Средняя тепловая нагрузка в реакторе равна 0,6 · 106 ккал/(м2 · ч), максимальная – 1,3 · 106 ккал/(м2 · ч). Длительность кампании реактора 250 суток, а при частичной догрузке тепловыделяющих элементов — до 1 года.

Мощность турбогенератора станции 1,5 тыс. кВт, однако три ее парогенератора могут давать пар давлением 20 ат и температурой 285°С в количестве, достаточном для получения мощности на валу турбины до 2 тыс. кВт.

Для защиты от излучения во время работы вокруг первых двух самоходов сооружается на месте эксплуатации земляная защита. Кроме того, реакторный самоход снабжен транспортируемой биологической защитой, позволяющей производить монтажные и демонтажные работы уже через несколько часов после остановки реактора, а также перевозить реактор с частично или полностью выгоревшей активной зоной. При транспортировке охлаждение реактора осуществляется с помощью воздушного радиатора, обеспечивающего съем до 0,3% номинальной мощности установки.

79370--16093474-m549x500.jpg

Ссылка на комментарий
Поделиться на других сайтах

«Плавучая атомная теплоэлектростанция» (ПАТЭС) — это, конечно, ещё не «домашний реактор» (всё-таки это судно-АЭС будет весить более 20 тысяч тонн), но электрическая выходная мощность в 70 мегаватт позволяет записать российский проект (развивающийся не первый год) в упомянутую выше категорию.

Два реактора на борту «баржи» ПАТЭС, «припаркованной» у берега, должны поставлять тому или иному городу и электричество, и тепло. Конструктивно установка схожа с силовыми установками атомных ледоколов, богатейший опыт эксплуатации которых имеется в нашей стране. Такая станция намного дешевле классической АЭС.

Пилотный образец ПАТЭС уже строится в Северодвинске (где и будет работать). В планах — Певек и Вилючинск.

070210_0755_3.jpg

Ссылка на комментарий
Поделиться на других сайтах

Мобильная АЭС

Более 40 лет назад, когда быстрыми темпами развивалась ядерная энергетика, и появились атомные подводные лодки, оснащенные компактными реакторами, родилась идея создать передвижную атомную электростанцию, размещенную на автомобильном или железнодорожном шасси. В первую очередь такие электростанции требовались для энергоснабжения военных радаров, расположенных в труднодоступной отдаленной местности, к примеру, на острове Новая Земля или среди бескрайней тайги. Спрятанные в надежных укрытиях, мобильные АЭС после ракетно-бомбового удара могли развернуться в любом необходимом месте.

Разработку и производство мобильной АЭС было решено начать в Минске. Вероятно, помимо мощного научно-технического потенциала Беларуси, не последнюю роль сыграло то, что в Минске расположен завод колесных тягачей, производивший шасси для транспортировки межконтинентальных ракет. На шасси такого тягача было решено делать АЭС.

Специально для этих целей и был создан Институт ядерной энергетики белорусской Академии наук, который теперь называется Объединенный институт энергетических и ядерных исследований "Сосны". Именно в поселке Сосны разрабатывали передвижную атомную электростанцию "Памир", главным конструктором которой был Василий Нестеренко.

Требования для создания мобильной АЭС по тем временам были на грани фантастики — необходимо было сконструировать компактный и легкий энергетический реактор мощностью 630 КВт с автономной системой охлаждения и при этом способный работать в диапазоне температур от - 50 до +50.

Даже реакторы подводных лодок, где было относительно много места и воды для охлаждения, были простыми изделиями в сравнении с тем, что предстояло создать в Минске.

Многие исследования приходилось начинать с нуля. Например, в охлаждающем контуре в качестве теплоносителя впервые применена четырехокись азота. Обычные реакторы охлаждаются водой или натрием, для чего необходима, как минимум, двухконтурная схема охлаждения. А в реакторной установке "Памир" — газожидкостный термодинамический цикл по одноконтурной схеме. Эти технические решения позволили АЭС работать в требуемом диапазоне наружной температуры.

Именно в АЭС «Памир» уникально была решена проблема безопасности самого реактора. В составе активной зоны был применен гидрид-циркониевый замедлитель, а ТВЭЛы (тепловыделяющие элементы) изготовлены из окиси урана в никель-хромовой матрице. В случае аварии с расплавлением матрицы за счет такого решения выход радиоактивных газов уменьшался в 100 раз, так как температура плавления никель-хромовой матрицы была 1350 градусов, а двуокись урана удерживала газовые продукты деления до 1850 градусов. Критическая масса реактора с гидрид-циркониевым замедлителем составляла около 12 килограммов топлива 45-процентного обогащения. Гидрид циркония удерживал водород до 570-580 градусов. В случае аварии при расплавлении топливной матрицы и достижении гидрид-цирконием температуры более 600 градусов водород из него выделялся за сотые доли секунды и при этом критическая масса реактора уже составляла 160-180 килограммов, в реакторе прекращалась цепная реакция деления урана, так как он становился подкритичным. Это было единственное в мире на тот момент решение пассивной безопасности ядерного реактора.

IMG_3408.jpg

scheme_1238578425_full.jpg

MAZ537-2.jpg

Ссылка на комментарий
Поделиться на других сайтах

Сергей Иванович для чего вы всё это демонстрируете.

Сижу документы печатаю, иногда надо и отвлечься, расслабится. Может кому интересно.

Ссылка на комментарий
Поделиться на других сайтах

Присоединиться к обсуждению

Вы можете ответить сейчас, а зарегистрироваться позже. Если у вас уже есть аккаунт, войдите, чтобы ответить от своего имени.

Гость
Ответить в этой теме...

×   Вы вставили отформатированный текст.   Удалить форматирование

  Допустимо не более 75 смайлов.

×   Ваша ссылка была автоматически заменена на медиа-контент.   Отображать как ссылку

×   Ваши публикации восстановлены.   Очистить редактор

×   Вы не можете вставить изображения напрямую. Загрузите или вставьте изображения по ссылке.

Загрузка...

Информация

  • Недавно просматривали   0 пользователей

    • Ни один зарегистрированный пользователь не просматривает эту страницу.

×
×
  • Создать...